Hands-on Exercise 4b: Visual Statistical Analysis

Published

February 1, 2024

Modified

February 1, 2024

1 Visual Statistical Analysis with ggstatsplot

In this section, we will use the following our R packages.

  • tidyverse, a family of R packages for data science process,

  • ggstatsplot, a ggplot2 extension created graphics with details from statistical tests included in the information-rich plots themselves.

    • To provide alternative statistical inference methods by default.

    • To follow best practices for statistical reporting. For all statistical tests reported in the plots, the default template abides by the APA gold standard for statistical reporting

2 Getting Started

The code chunk below uses p_load() of pacman package to check if these packages are installed in the computer and load them onto your working R environment.

pacman::p_load(ggstatsplot, tidyverse) 

The code chunk below imports exam_data.csv into R environment by using read_csv() function of readr package.

exam <- read.csv("data/Exam_data.csv")

The code chunk below uses stat()to summarize the data.

stat(exam)
            ID CLASS GENDER    RACE ENGLISH MATHS SCIENCE
1   Student321    3I   Male   Malay      21     9      15
2   Student305    3I Female   Malay      24    22      16
3   Student289    3H   Male Chinese      26    16      16
4   Student227    3F   Male Chinese      27    77      31
5   Student318    3I   Male   Malay      27    11      25
6   Student306    3I Female   Malay      31    16      16
7   Student313    3I   Male Chinese      31    21      25
8   Student316    3I   Male   Malay      31    18      27
9   Student312    3I   Male   Malay      33    19      15
10  Student297    3H   Male  Indian      34    49      37
11  Student314    3I   Male Chinese      34    39      42
12  Student278    3H Female   Malay      36    35      22
13  Student302    3I Female Chinese      36    23      32
14  Student323    3I   Male Chinese      36    36      36
15  Student296    3H   Male Chinese      37    49      35
16  Student311    3I Female Chinese      38    30      45
17  Student304    3I Female   Malay      39    21      21
18  Student307    3I Female   Malay      39    24      35
19  Student259    3G   Male   Malay      40    54      26
20  Student273    3H Female   Malay      40    36      24
21  Student292    3H   Male   Malay      40    40      31
22  Student303    3I Female   Malay      40    20      32
23  Student177    3E   Male Chinese      41    71      40
24  Student253    3G   Male  Others      41    51      37
25  Student294    3H   Male   Malay      41    32      26
26  Student287    3H   Male   Malay      42    32      27
27  Student293    3H   Male   Malay      42    37      23
28  Student290    3H   Male   Malay      43    30      31
29  Student295    3H   Male  Indian      43    35      38
30  Student319    3I   Male  Indian      43    25      24
31  Student309    3I Female   Malay      44    24      24
32  Student315    3I   Male   Malay      44    19      35
33  Student288    3H   Male Chinese      45    50      27
34  Student301    3I Female   Malay      45    32      30
35  Student248    3G   Male Chinese      46    55      17
36  Student277    3H Female   Malay      46    31      34
37  Student171    3E Female Chinese      48    56      49
38  Student324    3I   Male Chinese      48    41      41
39  Student258    3G   Male   Malay      49    30      32
40  Student282    3H Female Chinese      49    44      19
41  Student298    3H   Male   Malay      49    41      32
42  Student317    3I   Male   Malay      49    34      31
43  Student276    3H Female   Malay      50    35      40
44  Student286    3H   Male   Malay      50    56      36
45  Student310    3I Female   Malay      50    58      50
46  Student215    3F Female Chinese      51    74      54
47  Student200    3F Female Chinese      52    71      47
48  Student202    3F Female Chinese      52    55      39
49  Student264    3G   Male  Indian      52    42      16
50  Student322    3I   Male   Malay      52    58      41
51  Student117    3C   Male Chinese      53    90      46
52  Student199    3F Female Chinese      53    77      57
53  Student251    3G   Male Chinese      53    51      45
54  Student320    3I   Male   Malay      53    25      48
55  Student188    3E   Male Chinese      54    65      40
56  Student231    3F   Male Chinese      54    78      60
57  Student255    3G   Male Chinese      54    54      32
58  Student262    3G   Male   Malay      54    59      45
59  Student265    3G   Male Chinese      54    38      46
60  Student271    3H Female Chinese      54    52      52
61  Student272    3H Female   Malay      54    33      37
62  Student279    3H Female  Indian      54    48      53
63  Student283    3H Female   Malay      55    43      45
64  Student284    3H Female Chinese      55    56      45
65  Student241    3G Female   Malay      56    52      57
66  Student261    3G   Male   Malay      56    37      34
67  Student291    3H   Male   Malay      56    44      46
68  Student299    3H   Male   Malay      56    52      59
69  Student198    3F Female Chinese      57    74      62
70  Student201    3F Female Chinese      57    67      67
71  Student212    3F Female   Malay      57    63      55
72  Student226    3F   Male   Malay      57    75      58
73  Student240    3G Female   Malay      57    49      45
74  Student266    3G Female Chinese      57    47      64
75  Student274    3H Female   Malay      57    50      39
76  Student179    3E   Male Chinese      58    69      57
77  Student185    3E   Male   Malay      58    78      66
78  Student224    3F   Male   Malay      58    64      60
79  Student280    3H Female   Malay      58    47      47
80  Student281    3H Female  Indian      58    40      46
81  Student163    3E Female   Malay      59    58      36
82  Student225    3F   Male   Malay      59    74      45
83  Student115    3C   Male Chinese      60    72      52
84  Student203    3F Female Chinese      60    75      61
85  Student246    3G Female   Malay      60    43      44
86  Student263    3G   Male  Indian      60    68      63
87  Student082    3C Female Chinese      61    85      68
88  Student114    3C   Male Chinese      61    79      50
89  Student119    3D Female Chinese      61    62      49
90  Student191    3E   Male Chinese      61    88      52
91  Student206    3F Female   Malay      61    62      55
92  Student219    3F   Male   Malay      61    63      60
93  Student244    3G Female   Malay      61    58      46
94  Student269    3H Female Chinese      61    52      46
95  Student186    3E   Male Chinese      62    85      74
96  Student189    3E   Male Chinese      62    58      59
97  Student210    3F Female Chinese      62    74      68
98  Student221    3F   Male   Malay      62    58      58
99  Student245    3G Female   Malay      62    45      52
100 Student260    3G   Male   Malay      62    79      57
101 Student085    3C Female Chinese      63    64      49
102 Student106    3C   Male Chinese      63    84      44
103 Student148    3D   Male Chinese      63    74      63
104 Student220    3F   Male Chinese      63    71      64
105 Student235    3G Female   Malay      63    50      48
106 Student270    3H Female Chinese      63    70      53
107 Student285    3H Female Chinese      63    46      50
108 Student300    3H Female  Others      63    67      65
109 Student141    3D   Male  Indian      64    78      76
110 Student157    3E Female Chinese      64    66      67
111 Student175    3E   Male   Malay      64    66      54
112 Student176    3E   Male Chinese      64    64      49
113 Student184    3E   Male   Malay      64    65      63
114 Student209    3F Female   Malay      64    69      55
115 Student252    3G   Male Chinese      64    36      41
116 Student275    3H Female   Malay      64    54      54
117 Student098    3C   Male Chinese      65    90      63
118 Student105    3C   Male Chinese      65    80      73
119 Student155    3D   Male Chinese      65    68      66
120 Student156    3E Female Chinese      65    78      65
121 Student167    3E Female   Malay      65    79      51
122 Student228    3F   Male   Malay      65    65      60
123 Student234    3G Female   Malay      65    49      41
124 Student238    3G Female Chinese      65    81      78
125 Student133    3D Female   Malay      66    76      56
126 Student162    3E Female   Malay      66    61      56
127 Student180    3E   Male Chinese      66    71      72
128 Student197    3F Female Chinese      66    72      61
129 Student208    3F Female   Malay      66    64      69
130 Student213    3F Female   Malay      66    70      61
131 Student218    3F   Male Chinese      66    63      64
132 Student229    3F   Male Chinese      66    80      74
133 Student242    3G Female Chinese      66    63      50
134 Student256    3G   Male   Malay      66    64      61
135 Student112    3C   Male Chinese      67    73      54
136 Student140    3D   Male Chinese      67    86      76
137 Student183    3E   Male   Malay      67    72      63
138 Student211    3F Female  Others      67    70      68
139 Student223    3F   Male   Malay      67    68      59
140 Student232    3F Female Chinese      67    95      84
141 Student233    3F Female Chinese      67    80      56
142 Student243    3G Female   Malay      67    53      44
143 Student249    3G   Male Chinese      67    81      74
144 Student254    3G   Male Chinese      67    74      59
145 Student026    3A   Male Chinese      68    87      66
146 Student097    3C   Male   Malay      68    63      50
147 Student116    3C   Male Chinese      68    79      77
148 Student145    3D   Male Chinese      68    83      65
149 Student159    3E Female   Malay      68    74      58
150 Student190    3E   Male  Others      68    67      59
151 Student207    3F Female   Malay      68    69      65
152 Student250    3G   Male Chinese      68    60      59
153 Student268    3H Female   Malay      68    61      64
154 Student204    3F Female   Malay      69    75      54
155 Student216    3F Female Chinese      69    67      69
156 Student247    3G Female Chinese      69    62      58
157 Student257    3G   Male   Malay      69    44      50
158 Student021    3A   Male Chinese      70    90      72
159 Student126    3D Female  Others      70    70      68
160 Student192    3E   Male   Malay      70    66      63
161 Student205    3F Female   Malay      70    70      58
162 Student230    3F   Male   Malay      70    84      73
163 Student237    3G Female   Malay      70    63      42
164 Student048    3B Female Chinese      71    82      72
165 Student096    3C   Male   Malay      71    65      57
166 Student100    3C   Male Chinese      71    82      72
167 Student103    3C   Male Chinese      71    75      52
168 Student131    3D Female  Others      71    75      74
169 Student161    3E Female   Malay      71    79      68
170 Student173    3E Female Chinese      71    89      83
171 Student182    3E   Male Chinese      71    77      72
172 Student217    3F   Male Chinese      71    74      68
173 Student267    3G Female Chinese      71    63      58
174 Student020    3A Female Chinese      72    91      77
175 Student073    3B   Male Chinese      72    83      69
176 Student079    3C Female Chinese      72    60      37
177 Student132    3D Female Chinese      72    71      61
178 Student136    3D   Male Chinese      72    96      77
179 Student147    3D   Male Chinese      72    79      79
180 Student151    3D   Male Chinese      72    74      78
181 Student168    3E Female   Malay      72    52      55
182 Student025    3A   Male Chinese      73    91      74
183 Student046    3B Female Chinese      73    65      75
184 Student087    3C Female Chinese      73    85      71
185 Student089    3C Female Chinese      73    74      68
186 Student090    3C Female Chinese      73    73      69
187 Student094    3C Female Chinese      73    69      62
188 Student099    3C   Male Chinese      73    79      74
189 Student111    3C   Male   Malay      73    66      53
190 Student118    3D Female Chinese      73    81      65
191 Student120    3D Female Chinese      73    72      70
192 Student122    3D Female Chinese      73    77      76
193 Student143    3D   Male Chinese      73    74      72
194 Student146    3D   Male Chinese      73    79      66
195 Student150    3D   Male   Malay      73    85      71
196 Student153    3D   Male Chinese      73    83      74
197 Student170    3E Female  Indian      73    83      57
198 Student174    3E   Male   Malay      73    75      69
199 Student181    3E   Male Chinese      73    77      68
200 Student214    3F Female Chinese      73    82      62
201 Student088    3C Female Chinese      74    88      72
202 Student101    3C   Male Chinese      74    75      80
203 Student113    3C   Male Chinese      74    78      71
204 Student137    3D   Male Chinese      74    86      77
205 Student139    3D   Male Chinese      74    87      65
206 Student158    3E Female Chinese      74    82      75
207 Student169    3E Female Chinese      74    59      61
208 Student236    3G Female Chinese      74    60      46
209 Student067    3B   Male Chinese      75    84      80
210 Student074    3B   Male Chinese      75    83      75
211 Student093    3C Female Chinese      75    85      71
212 Student110    3C   Male   Malay      75    76      72
213 Student154    3D   Male Chinese      75    58      67
214 Student178    3E   Male Chinese      75    68      64
215 Student195    3F Female Chinese      75    70      73
216 Student011    3A Female Chinese      76    91      74
217 Student024    3A   Male Chinese      76    88      72
218 Student035    3A   Male Chinese      76    89      71
219 Student083    3C Female   Malay      76    75      63
220 Student124    3D Female Chinese      76    67      53
221 Student165    3E Female Chinese      76    82      67
222 Student166    3E Female Chinese      76    80      75
223 Student172    3E Female Chinese      76    71      62
224 Student187    3E   Male Chinese      76    88      71
225 Student053    3B Female Chinese      77    79      77
226 Student054    3B Female Chinese      77    85      78
227 Student063    3B Female Chinese      77    69      72
228 Student068    3B   Male Chinese      77    93      82
229 Student072    3B   Male Chinese      77    79      76
230 Student104    3C   Male Chinese      77    91      72
231 Student109    3C   Male   Malay      77    81      69
232 Student125    3D Female Chinese      77    85      78
233 Student129    3D Female Chinese      77    80      66
234 Student134    3D Female Chinese      77    74      67
235 Student142    3D   Male Chinese      77    89      80
236 Student164    3E Female   Malay      77    54      68
237 Student194    3E Female Chinese      77    78      72
238 Student196    3F Female Chinese      77    80      69
239 Student222    3F   Male   Malay      77    77      72
240 Student006    3A Female Chinese      78    75      70
241 Student032    3A   Male   Malay      78    85      84
242 Student045    3B Female   Malay      78    83      65
243 Student070    3B   Male   Malay      78    95      70
244 Student092    3C Female Chinese      78    86      84
245 Student108    3C   Male Chinese      78    78      70
246 Student138    3D   Male  Indian      78    78      65
247 Student149    3D   Male   Malay      78    83      79
248 Student152    3D   Male  Others      78    61      74
249 Student160    3E Female   Malay      78    71      49
250 Student019    3A Female Chinese      79    77      70
251 Student023    3A   Male Chinese      79    94      79
252 Student028    3A   Male Chinese      79    90      80
253 Student065    3B Female Chinese      79    91      85
254 Student069    3B   Male Chinese      79    86      81
255 Student080    3C Female   Malay      79    73      58
256 Student086    3C Female   Malay      79    79      69
257 Student091    3C Female Chinese      79    82      61
258 Student095    3C Female Chinese      79    86      75
259 Student107    3C   Male Chinese      79    92      61
260 Student144    3D   Male Chinese      79    86      77
261 Student004    3A Female Chinese      80    89      73
262 Student034    3A   Male Chinese      80    88      78
263 Student055    3B Female Chinese      80    89      85
264 Student060    3B Female   Malay      80    79      77
265 Student078    3B Female Chinese      80    97      83
266 Student081    3C Female Chinese      80    76      69
267 Student239    3G Female   Malay      80    56      52
268 Student005    3A Female Chinese      81    79      62
269 Student052    3B Female Chinese      81    85      82
270 Student062    3B Female   Malay      81    87      81
271 Student102    3C   Male Chinese      81    78      70
272 Student121    3D Female   Malay      81    82      71
273 Student123    3D Female Chinese      81    74      70
274 Student128    3D Female  Others      81    76      70
275 Student008    3A Female Chinese      82    78      82
276 Student047    3B Female Chinese      82    86      78
277 Student058    3B Female   Malay      82    81      65
278 Student064    3B Female   Malay      82    87      78
279 Student130    3D Female   Malay      82    80      67
280 Student014    3A Female Chinese      83    93      84
281 Student018    3A Female  Indian      83    90      83
282 Student029    3A   Male Chinese      83    87      89
283 Student050    3B Female Chinese      83    89      84
284 Student066    3B   Male Chinese      83    97      88
285 Student075    3B   Male Chinese      83    80      79
286 Student084    3C Female Chinese      83    76      56
287 Student127    3D Female   Malay      83    81      60
288 Student003    3A Female Chinese      84    91      82
289 Student037    3A   Male Chinese      84    91      74
290 Student041    3B Female Chinese      84    85      78
291 Student043    3B Female Chinese      84    97      88
292 Student051    3B Female Chinese      84    83      70
293 Student057    3B Female   Malay      84    90      80
294 Student027    3A   Male Chinese      85    98      80
295 Student031    3A   Male Chinese      85    91      78
296 Student044    3B Female Chinese      85    92      84
297 Student049    3B Female Chinese      85    86      83
298 Student056    3B Female Chinese      85    86      77
299 Student059    3B Female   Malay      85    74      75
300 Student061    3B Female   Malay      85    87      79
301 Student076    3B   Male Chinese      85    85      82
302 Student135    3D Female Chinese      85    86      81
303 Student001    3A Female Chinese      86    90      85
304 Student033    3A   Male Chinese      86    95      84
305 Student038    3A   Male Chinese      86    91      87
306 Student071    3B   Male Chinese      86    91      88
307 Student077    3B   Male Chinese      86    91      88
308 Student009    3A Female Chinese      87    95      82
309 Student022    3A   Male Chinese      87    90      91
310 Student042    3B Female  Indian      87    92      81
311 Student007    3A Female Chinese      88    91      86
312 Student030    3A   Male Chinese      88    89      83
313 Student040    3A Female   Malay      88    87      85
314 Student039    3A   Male Chinese      89    97      90
315 Student002    3A Female Chinese      90    93      89
316 Student013    3A Female Chinese      90    97      90
317 Student017    3A Female Chinese      90    85      89
318 Student016    3A Female Chinese      91    95      91
319 Student015    3A Female  Others      92    90      87
320 Student010    3A Female Chinese      93    93      90
321 Student012    3A Female Chinese      93    97      84
322 Student036    3A   Male Chinese      96    99      96

2.1 One-sample test: gghistostats() method

In the code chunk below, gghistostats() is used to to build an visual of one-sample test on English scores.

set.seed(1234)

gghistostats(data = exam,
  x = ENGLISH,
  type = "bayes",
  test.value = 60,
  xlab = "English scores")

2.2 Unpacking the Bayes Factor

  • A Bayes factor is the ratio of the likelihood of one particular hypothesis to the likelihood of another. It can be interpreted as a measure of the strength of evidence in favor of one theory among two competing theories.

  • That is because the Bayes factor gives us a way to evaluate the data in favor of a null hypothesis, and to use external information to do so. It tells us what the weight of the evidence is in favor of a given hypothesis.

  • When we are comparing two hypotheses, H1 (the alternate hypothesis) and H0 (the null hypothesis), the Bayes Factor is often written as B10. It can be defined mathematically as

  • The Schwarz criterion is one of the easiest ways to calculate rough approximation of the Bayes Factor.

2.3 How to interpret Bayes Factor

A Bayes Factor can be any positive number. One of the most common interpretations is this one—first proposed by Harold Jeffereys (1961) and slightly modified by Lee and Wagenmakers in 2013.

2.4 Two-sample mean test: ggbetweenstats()

In the code chunk below, ggbetweenstats() is used to build a visual for two-sample mean test of Maths scores by gender.

ggbetweenstats(data = exam,
  x = GENDER, 
  y = MATHS,
  type = "np",
  messages = FALSE)

2.5 Oneway ANOVA Test: ggbetweenstats() method

In the code chunk below, ggbetweenstats() is used to build a visual for One-way ANOVA test on English score by race.

ggbetweenstats(data = exam,
  x = RACE, 
  y = ENGLISH,
  type = "p",
  mean.ci = TRUE, 
  pairwise.comparisons = TRUE, 
  pairwise.display = "s",
  p.adjust.method = "fdr",
  messages = FALSE)

  • “ns” → only non-significant

  • “s” → only significant

  • “all” → everything

2.6 Significant Test of Correlation: ggscatterstats()

In the code chunk below, ggscatterstats() is used to build a visual for Significant Test of Correlation between Maths scores and English scores.

ggscatterstats(data = exam,
  x = MATHS,
  y = ENGLISH,
  marginal = FALSE)

2.7 Significant Test of Association (Depedence) : ggbarstats() methods

In the code chunk below, the Maths scores is binned into a 4-class variable by using cut().

exam1 <- exam %>% 
  mutate(MATHS_bins = 
           cut(MATHS, 
               breaks = c(0,60,75,85,100)))

In this code chunk below ggbarstats() is used to build a visual for Significant Test of Association

ggbarstats(exam1, 
           x = MATHS_bins, 
           y = GENDER)

3 Visualizing Models

In this section, we will use parameters package to learn how to visualize model diagnostic and model parameters.

Toyota Corolla case study will be used. The purpose of study is to build a model to discover factors affecting prices of used-cars by taking into consideration a set of explanatory variables.

4 Getting Started

The code chunk below uses p_load() of pacman package to check if these packages are installed in the computer and load them onto your working R environment.

pacman::p_load(readxl, performance, parameters, see, ggplot2) 

In the code chunk below, read_xls() of readxl package is used to import the data worksheet of ToyotaCorolla.xls workbook into R.

car_resale <- read_xls("data/ToyotaCorolla.xls", 
                       "data")

The code chunk below uses stat()to summarize the data.

stat(car_resale)
# A tibble: 1,436 × 38
      Id Model    Price Age_08_04 Mfg_Month Mfg_Year     KM Quarterly_Tax Weight
   <dbl> <chr>    <dbl>     <dbl>     <dbl>    <dbl>  <dbl>         <dbl>  <dbl>
 1    81 TOYOTA … 18950        25         8     2002  20019           100   1180
 2     1 TOYOTA … 13500        23        10     2002  46986           210   1165
 3     2 TOYOTA … 13750        23        10     2002  72937           210   1165
 4     3  TOYOTA… 13950        24         9     2002  41711           210   1165
 5     4 TOYOTA … 14950        26         7     2002  48000           210   1165
 6     5 TOYOTA … 13750        30         3     2002  38500           210   1170
 7     6 TOYOTA … 12950        32         1     2002  61000           210   1170
 8     7  TOYOTA… 16900        27         6     2002  94612           210   1245
 9     8 TOYOTA … 18600        30         3     2002  75889           210   1245
10    44 TOYOTA … 16950        27         6     2002 110404           234   1255
# ℹ 1,426 more rows
# ℹ 29 more variables: Guarantee_Period <dbl>, HP_Bin <chr>, CC_bin <chr>,
#   Doors <dbl>, Gears <dbl>, Cylinders <dbl>, Fuel_Type <chr>, Color <chr>,
#   Met_Color <dbl>, Automatic <dbl>, Mfr_Guarantee <dbl>,
#   BOVAG_Guarantee <dbl>, ABS <dbl>, Airbag_1 <dbl>, Airbag_2 <dbl>,
#   Airco <dbl>, Automatic_airco <dbl>, Boardcomputer <dbl>, CD_Player <dbl>,
#   Central_Lock <dbl>, Powered_Windows <dbl>, Power_Steering <dbl>, …

4.1 Multiple Regression Model using lm()

The code chunk below is used to calibrate a multiple linear regression model by using lm() of Base Stats of R.

model <- lm(Price ~ Age_08_04 + Mfg_Year + KM + 
              Weight + Guarantee_Period, data = car_resale)
model

Call:
lm(formula = Price ~ Age_08_04 + Mfg_Year + KM + Weight + Guarantee_Period, 
    data = car_resale)

Coefficients:
     (Intercept)         Age_08_04          Mfg_Year                KM  
      -2.637e+06        -1.409e+01         1.315e+03        -2.323e-02  
          Weight  Guarantee_Period  
       1.903e+01         2.770e+01  

4.2 Model Diagnostic: checking for multicolinearity

In the code chunk, check_collinearity() of performance package.

check_collinearity(model)
# Check for Multicollinearity

Low Correlation

             Term  VIF     VIF 95% CI Increased SE Tolerance Tolerance 95% CI
               KM 1.46 [ 1.37,  1.57]         1.21      0.68     [0.64, 0.73]
           Weight 1.41 [ 1.32,  1.51]         1.19      0.71     [0.66, 0.76]
 Guarantee_Period 1.04 [ 1.01,  1.17]         1.02      0.97     [0.86, 0.99]

High Correlation

      Term   VIF     VIF 95% CI Increased SE Tolerance Tolerance 95% CI
 Age_08_04 31.07 [28.08, 34.38]         5.57      0.03     [0.03, 0.04]
  Mfg_Year 31.16 [28.16, 34.48]         5.58      0.03     [0.03, 0.04]
check_c <- check_collinearity(model)
plot(check_c)

4.3 Model Diagnostic: checking normality assumption

In the code chunk, check_normality() of performance package is used.

model1 <- lm(Price ~ Age_08_04 + KM + 
              Weight + Guarantee_Period, data = car_resale)

check_n <- check_normality(model1)

plot(check_n, type ="qq")

4.4 Model Diagnostic: Check model for homogeneity of variances

In the code chunk, check_heteroscedasticity() of performance package is used.

check_h <- check_heteroscedasticity(model1)

plot(check_h)

4.5 Model Diagnostic: Complete check

We can also perform the complete by using check_model().

check_model(model1)

4.6 Visualising Regression Parameters: see methods

In the code chunk, plot() of see package and parameters() of parameters package is used to visualize the parameters of a regression model.

plot(parameters(model1))

4.7 Visualizing Regression Parameters: ggcoefstats() methods

In the code chunk, ggcoefstats() of ggstatsplot package is used to visualize the parameters of a regression model.

ggcoefstats(model1, 
            output = "plot")