Hands-on Exercise 7a: Choropleth Mapping with R

Published

February 29, 2024

Modified

February 29, 2024

1 Getting Started

In this hands-on exercise, we will mainly use tmap  package and other packages as following:

  • readr for importing delimited text file,

  • tidyr for tidying data,

  • dplyr for wrangling data and

  • sf for handling geospatial data.

1.1 Loading R package

The code chunk below uses p_load() of pacman package to check if these packages are installed in the computer and load them onto your working R environment.

pacman::p_load(sf, tmap, tidyverse)

1.2 Importing Data

1.2.1 Importing Geospatial Data into R

The code chunk below uses the st_read() function of sf package to import MP14_SUBZONE_WEB_PL shapefile into R as a simple feature data frame called mpsz.

mpsz <- st_read(dsn = "data/geospatial", 
                layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source 
  `C:\kbuathang\ISSS608_VAA\Hands-on_Ex\Hands-on_Ex7\data\geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21

Next, we will examine the content of mpsz by using the code chunk below.

mpsz
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
First 10 features:
   OBJECTID SUBZONE_NO       SUBZONE_N SUBZONE_C CA_IND      PLN_AREA_N
1         1          1    MARINA SOUTH    MSSZ01      Y    MARINA SOUTH
2         2          1    PEARL'S HILL    OTSZ01      Y          OUTRAM
3         3          3       BOAT QUAY    SRSZ03      Y SINGAPORE RIVER
4         4          8  HENDERSON HILL    BMSZ08      N     BUKIT MERAH
5         5          3         REDHILL    BMSZ03      N     BUKIT MERAH
6         6          7  ALEXANDRA HILL    BMSZ07      N     BUKIT MERAH
7         7          9   BUKIT HO SWEE    BMSZ09      N     BUKIT MERAH
8         8          2     CLARKE QUAY    SRSZ02      Y SINGAPORE RIVER
9         9         13 PASIR PANJANG 1    QTSZ13      N      QUEENSTOWN
10       10          7       QUEENSWAY    QTSZ07      N      QUEENSTOWN
   PLN_AREA_C       REGION_N REGION_C          INC_CRC FMEL_UPD_D   X_ADDR
1          MS CENTRAL REGION       CR 5ED7EB253F99252E 2014-12-05 31595.84
2          OT CENTRAL REGION       CR 8C7149B9EB32EEFC 2014-12-05 28679.06
3          SR CENTRAL REGION       CR C35FEFF02B13E0E5 2014-12-05 29654.96
4          BM CENTRAL REGION       CR 3775D82C5DDBEFBD 2014-12-05 26782.83
5          BM CENTRAL REGION       CR 85D9ABEF0A40678F 2014-12-05 26201.96
6          BM CENTRAL REGION       CR 9D286521EF5E3B59 2014-12-05 25358.82
7          BM CENTRAL REGION       CR 7839A8577144EFE2 2014-12-05 27680.06
8          SR CENTRAL REGION       CR 48661DC0FBA09F7A 2014-12-05 29253.21
9          QT CENTRAL REGION       CR 1F721290C421BFAB 2014-12-05 22077.34
10         QT CENTRAL REGION       CR 3580D2AFFBEE914C 2014-12-05 24168.31
     Y_ADDR SHAPE_Leng SHAPE_Area                       geometry
1  29220.19   5267.381  1630379.3 MULTIPOLYGON (((31495.56 30...
2  29782.05   3506.107   559816.2 MULTIPOLYGON (((29092.28 30...
3  29974.66   1740.926   160807.5 MULTIPOLYGON (((29932.33 29...
4  29933.77   3313.625   595428.9 MULTIPOLYGON (((27131.28 30...
5  30005.70   2825.594   387429.4 MULTIPOLYGON (((26451.03 30...
6  29991.38   4428.913  1030378.8 MULTIPOLYGON (((25899.7 297...
7  30230.86   3275.312   551732.0 MULTIPOLYGON (((27746.95 30...
8  30222.86   2208.619   290184.7 MULTIPOLYGON (((29351.26 29...
9  29893.78   6571.323  1084792.3 MULTIPOLYGON (((20996.49 30...
10 30104.18   3454.239   631644.3 MULTIPOLYGON (((24472.11 29...

1.2.2 Importing Attribute Data into R

The task will be performed by using read_csv() function of readr package as shown in the code chunk below.

popdata <- read_csv("data/aspatial/respopagesextod2011to2020.csv")

1.3 Preparing Data

We need to prepare a data table with year 2020 values. The data table should include the variables PA, SZ, YOUNG, ECONOMY ACTIVE, AGED, TOTAL, DEPENDENCY.

  • YOUNG: age group 0 to 4 until age groyup 20 to 24,

  • ECONOMY ACTIVE: age group 25-29 until age group 60-64,

  • AGED: age group 65 and above,

  • TOTAL: all age group, and

  • DEPENDENCY: the ratio between young and aged against economy active group

1.3.1 Data wrangling

The following data wrangling and transformation functions will be used:

  • pivot_wider() of tidyr package, and

  • mutate(), filter(), group_by() and select() of dplyr package

popdata2020 <- popdata %>%
  filter(Time == 2020) %>%
  group_by(PA, SZ, AG) %>%
  summarise(`POP` = sum(`Pop`)) %>%
  ungroup() %>%
  pivot_wider(names_from=AG, 
              values_from=POP) %>%
  mutate(YOUNG = rowSums(.[3:6])
         +rowSums(.[12])) %>%
mutate(`ECONOMY ACTIVE` = rowSums(.[7:11])+
         rowSums(.[13:15]))%>%
mutate(`AGED`=rowSums(.[16:21])) %>%
mutate(`TOTAL`=rowSums(.[3:21])) %>%  
mutate(`DEPENDENCY` = (`YOUNG` + `AGED`)
       /`ECONOMY ACTIVE`) %>%
  select(`PA`, `SZ`, `YOUNG`, 
       `ECONOMY ACTIVE`, `AGED`, 
       `TOTAL`, `DEPENDENCY`)

1.3.2 Joining the attribute data and geospatial data

First, we need to convert the values in PA and SZ fields to uppercase. This is because the values of PA and SZ fields are made up of upper and lowercase. On the other hand, the SUBZONE_N and PLN_AREA_N are in uppercase.

popdata2020 <- popdata2020 %>%
  mutate_at(.vars = vars(PA, SZ), 
          .funs = funs(toupper)) %>%
  filter(`ECONOMY ACTIVE` > 0)

Next, left_join() of dplyr is used to join the geographical data and attribute table using planning subzone name e.g. SUBZONE_N and SZ as the common identifier.

mpsz_pop2020 <- left_join(mpsz, popdata2020,
                          by = c("SUBZONE_N" = "SZ"))
Thing to learn from the code chunk above

left_join() of dplyr package is used with mpsz simple feature data frame as the left data table is to ensure that the output will be a simple features data frame.

Lastly, we need to save output to .rds

write_rds(mpsz_pop2020, "data/rds/mpszpop2020.rds")

2 Choropleth Mapping Geospatial Data Using tmap

Two approaches can be used to prepare thematic map using tmap, they are:

  • Plotting a thematic map quickly by using qtm().

  • Plotting highly customisable thematic map by using tmap elements.

2.1 Plotting a choropleth map quickly by using qtm()

The code chunk below will draw a cartographic standard choropleth map as shown below.

tmap_mode("plot")
qtm(mpsz_pop2020, 
    fill = "DEPENDENCY")

Things to learn from the code chunk above
  • tmap_mode() with “plot” option is used to produce a static map. For interactive mode, “view” option should be used.

  • fill argument is used to map the attribute (i.e. DEPENDENCY)

2.2 Creating a choropleth map by using tmap’s elements

The disadvantge of qtm() is that it makes aesthetics of individual layers harder to control. To draw a high quality cartographic choropleth map, tmap’s drawing elements should be used.

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY", 
          style = "quantile", 
          palette = "Blues",
          title = "Dependency ratio") +
  tm_layout(main.title = "Distribution of Dependency Ratio by planning subzone",
            main.title.position = "center",
            main.title.size = 1.2,
            legend.height = 0.45, 
            legend.width = 0.35,
            frame = TRUE) +
  tm_borders(alpha = 0.5) +
  tm_compass(type="8star", size = 2) +
  tm_scale_bar() +
  tm_grid(alpha =0.2) +
  tm_credits("Source: Planning Sub-zone boundary from Urban Redevelopment Authorithy (URA)\n and Population data from Department of Statistics DOS", 
             position = c("left", "bottom"))

In the following sub-section, more tmap functions that is used to plot these elements.

2.2.1 Drawing a base map

The basic building block of tmap is tm_shape() followed by one or more layer elemments such as tm_fill() and tm_polygons().

In the code chunk below, tm_shape() is used to define the input data (i.e mpsz_pop2020) and tm_polygons() is used to draw the planning subzone polygons

tm_shape(mpsz_pop2020) +
  tm_polygons()

2.2.2 Drawing a choropleth map using tm_polygons()

To draw a choropleth map showing the geographical distribution of a selected variable by planning subzone, we just need to assign the target variable such as Dependency to tm_polygons().

tm_shape(mpsz_pop2020)+
  tm_polygons("DEPENDENCY")

Things to learn from tm_polygons()
  • The default interval binning used to draw the choropleth map is called “pretty”. A detailed discussion of the data classification methods supported by tmap will be provided later.

  • The default colour scheme used is YlOrRd of ColorBrewer. You will learn more about the color scheme later on

  • By default, missing values will be shaded in grey.

2.2.3 Drawing a choropleth map using tm_fill() and tm_border()

tm_polygons() is a wraper of tm_fill() and tm_border(). tm_fill() shades the polygons by using the default colour scheme and tm_borders() adds the borders of the shapefile onto the choropleth map.

The code chunk below draws a choropleth map by using tm_fill() alone.

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY")

To add the boundary of the planning subzones, tm_borders will be used as shown in the code chunk below.

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY") +
  tm_borders(lwd = 0.1,  alpha = 1, lty= 2)

The alpha argument is used to define transparency number between 0 (totally transparent) and 1 (not transparent). By default, the alpha value of the col is used (normally 1).

Beside alpha argument, there are three other arguments for tm_borders(), they are:

  • col = border colour,

  • lwd = border line width. The default is 1, and

  • lty = border line type. The default is “solid”.

2.3 Data classification methods of tmap

Most choropleth maps employ some methods of data classification. The point of classification is to take a large number of observations and group them into data ranges or classes.

tmap provides a total ten data classification methods, namely: fixed, sd, equal, pretty (default), quantile, kmeans, hclust, bclust, fisher, and jenks.

To define a data classification method, the style argument of tm_fill() or tm_polygons() will be used.

2.3.1 Plotting choropleth maps with built-in classification methods

The code chunk below shows a quantile data classification that used 5 classes

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY",
          n = 5,
          style = "jenks") +
  tm_borders(alpha = 0.5, lwd = 0.5, lty= 3)

In the code chunk below, equal data classification method is used.

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY",
          n = 5,
          style = "equal") +
  tm_borders(alpha = 0.5)

In the code chunk below, quantile data classification method is used.

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY",
          n = 5,
          style = "quantile") +
  tm_borders(alpha = 0.5)

In the code chunk below, kmeans data classification method is used.

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY",
          n = 5,
          style = "kmeans") +
  tm_borders(alpha = 0.5)

In the code chunk below, bclust data classification method is used.

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY",
          n = 5,
          style = "bclust") +
  tm_borders(alpha = 0.5)

Committee Member: 1(1) 2(1) 3(1) 4(1) 5(1) 6(1) 7(1) 8(1) 9(1) 10(1)
Computing Hierarchical Clustering

The code chunk below shows a data classification that used 6 classes

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY",
          n = 6,
          style = "bclust") +
  tm_borders(alpha = 0.5)

Committee Member: 1(1) 2(1) 3(1) 4(1) 5(1) 6(1) 7(1) 8(1) 9(1) 10(1)
Computing Hierarchical Clustering

The code chunk below shows a data classification that used 10 classes

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY",
          n = 10,
          style = "bclust") +
  tm_borders(alpha = 0.5)

Committee Member: 1(1) 2(1) 3(1) 4(1) 5(1) 6(1) 7(1) 8(1) 9(1) 10(1)
Computing Hierarchical Clustering

2.3.2 Plotting choropleth map with custome break

For all the built-in styles, the category breaks are computed internally. In order to override these defaults, the breakpoints can be set explicitly by means of the breaks argument to the tm_fill(). It is important to note that, in tmap the breaks include a minimum and maximum. As a result, in order to end up with n categories, n+1 elements must be specified in the breaks option (the values must be in increasing order).

Before we get started, it is always a good practice to get some descriptive statistics on the variable before setting the break points. Code chunk below will be used to compute and display the descriptive statistics of DEPENDENCY field.

summary(mpsz_pop2020$DEPENDENCY)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
 0.1111  0.7147  0.7866  0.8585  0.8763 19.0000      92 

With reference to the results above, we set break point at 0.60, 0.70, 0.80, and 0.90. In addition, we also need to include a minimum and maximum, which we set at 0 and 100. Our breaks vector is thus c(0, 0.60, 0.70, 0.80, 0.90, 1.00)

Now, we will plot the choropleth map by using the code chunk below.

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY",
          breaks = c(0, 0.60, 0.70, 0.80, 0.90, 1.00)) +
  tm_borders(alpha = 0.5)

2.4 Colour Scheme

tmap supports colour ramps either defined by the user or a set of predefined colour ramps from the RColorBrewer package.

2.4.1 Using ColourBrewer palette

To change the colour, we assign the preferred colour to palette argument of tm_fill() as shown in the code chunk below.

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY",
          n = 6,
          style = "quantile",
          palette = "Blues") +
  tm_borders(alpha = 0.5)

To reverse the colour shading, add a “-” prefix.

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY",
          style = "quantile",
          palette = "-Greens") +
  tm_borders(alpha = 0.5)

Notice that the colour scheme has been reversed.

2.5 Map Layouts

Map layout refers to the combination of all map elements into a cohensive map. Map elements include among others the objects to be mapped, the title, the scale bar, the compass, margins and aspects ratios. Colour settings and data classification methods covered in the previous section relate to the palette and break-points are used to affect how the map looks.

2.5.1 Map Legend

In tmap, several legend options are provided to change the placement, format and appearance of the legend.

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY", 
          style = "jenks", 
          palette = "Blues", 
          legend.hist = TRUE, 
          legend.is.portrait = TRUE,
          legend.hist.z = 0.1) +
  tm_layout(main.title = "Distribution of Dependency Ratio by planning subzone \n(Jenks classification)",
            main.title.position = "center",
            main.title.size = 1,
            legend.height = 0.45, 
            legend.width = 0.35,
            legend.outside = FALSE,
            legend.position = c("right", "bottom"),
            frame = FALSE) +
  tm_borders(alpha = 0.5)

2.5.2 Map style

tmap allows a wide variety of layout settings to be changed. They can be called by using tmap_style().

The code chunk below shows the classic style is used.

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY", 
          style = "quantile", 
          palette = "-Greens") +
  tm_borders(alpha = 0.5) +
  tmap_style("classic")

2.5.3 Cartographic Furniture

tmap also also provides arguments to draw other map furniture such as compass, scale bar and grid lines.

In the code chunk below, tm_compass(), tm_scale_bar() and tm_grid() are used to add compass, scale bar and grid lines onto the choropleth map.

tm_shape(mpsz_pop2020)+
  tm_fill("DEPENDENCY", 
          style = "quantile", 
          palette = "Blues",
          title = "No. of persons") +
  tm_layout(main.title = "Distribution of Dependency Ratio \nby planning subzone",
            main.title.position = "center",
            main.title.size = 1.2,
            legend.height = 0.45, 
            legend.width = 0.35,
            frame = TRUE) +
  tm_borders(alpha = 0.5) +
  tm_compass(type="8star", size = 2) +
  tm_scale_bar(width = 0.15) +
  tm_grid(lwd = 0.1, alpha = 0.2) +
  tm_credits("Source: Planning Sub-zone boundary from Urban Redevelopment Authorithy (URA)\n and Population data from Department of Statistics DOS", 
             position = c("left", "bottom"))+
  tmap_style("white")

2.6 Drawing Small Multiple Choropleth Maps

Small multiple maps, also referred to as facet maps, are composed of many maps arrange side-by-side, and sometimes stacked vertically. Small multiple maps enable the visualisation of how spatial relationships change with respect to another variable, such as time.

In tmap, small multiple maps can be plotted in three ways:

  • by assigning multiple values to at least one of the asthetic arguments,

  • by defining a group-by variable in tm_facets(), and

  • by creating multiple stand-alone maps with tmap_arrange().

2.6.1 By assigning multiple values to at least one of the aesthetic arguments

In this example, small multiple choropleth maps are created by defining ncols in tm_fill()

tm_shape(mpsz_pop2020)+
  tm_fill(c("YOUNG", "AGED"),
          style = "equal", 
          palette = "Blues") +
  tm_layout(legend.position = c("right", "bottom")) +
  tm_borders(alpha = 0.5) +
  tmap_style("white")

In this example, small multiple choropleth maps are created by assigning multiple values to at least one of the aesthetic arguments

tm_shape(mpsz_pop2020)+ 
  tm_polygons(c("DEPENDENCY","AGED"),
          style = c("equal", "quantile"), 
          palette = list("Blues","Greens")) +
  tm_layout(legend.position = c("right", "bottom"))

2.6.2 By defining a group-by variable in tm_facets()

In this example, multiple small choropleth maps are created by using tm_facets().

tm_shape(mpsz_pop2020) +
  tm_fill("DEPENDENCY",
          style = "quantile",
          palette = "Blues",
          thres.poly = 0) + 
  tm_facets(by="REGION_N", 
            free.coords=TRUE, 
            drop.shapes=FALSE) +
  tm_layout(legend.show = FALSE,
            title.position = c("center", "center"), 
            title.size = 20) +
  tm_borders(alpha = 0.5)

2.6.3 By creating multiple stand-alone maps with tmap_arrange()

In this example, multiple small choropleth maps are created by creating multiple stand-alone maps with tmap_arrange().

youngmap <- tm_shape(mpsz_pop2020)+ 
  tm_polygons("YOUNG", 
              style = "quantile", 
              palette = "Blues")

agedmap <- tm_shape(mpsz_pop2020)+ 
  tm_polygons("AGED", 
              style = "quantile", 
              palette = "Blues")

tmap_arrange(youngmap, agedmap, asp=1, ncol=2)

2.7 Mappping Spatial Object Meeting a Selection Criterion

Instead of creating small multiple choropleth map, you can also use selection funtion to map spatial objects meeting the selection criterion.

tm_shape(mpsz_pop2020[mpsz_pop2020$REGION_N=="CENTRAL REGION", ])+
  tm_fill("DEPENDENCY", 
          style = "quantile", 
          palette = "Blues", 
          legend.hist = TRUE, 
          legend.is.portrait = TRUE,
          legend.hist.z = 0.1) +
  tm_layout(legend.outside = TRUE,
            legend.height = 0.45, 
            legend.width = 5.0,
            legend.position = c("right", "bottom"),
            frame = FALSE) +
  tm_borders(alpha = 0.5)